
pynsq Documentation
Release 0.5.0

Matt Reiferson and Jehiah Czebotar

October 17, 2014

Contents

1 Message – an NSQ message 3

2 Consumers 5
2.1 Reader – high-level consumer . 5

3 Producers 9
3.1 Writer – high-level producer . 9

4 LegacyReader – backwards compatible Reader 11

5 Indices and tables 13

i

ii

pynsq Documentation, Release 0.5.0

The official Python client library for NSQ

It provides high-level nsq.Reader and nsq.Writer classes for building consumers and producers and two low-
level modules for both sync and async communication over the NSQ Protocol (if you wanted to write your own
high-level functionality).

The async module is built on top of the Tornado IOLoop and as such requires tornado to be installed.

Contents:

Contents 1

https://github.com/bitly/nsq
https://github.com/bitly/nsq/blob/master/docs/protocol.md
http://tornadoweb.org

pynsq Documentation, Release 0.5.0

2 Contents

CHAPTER 1

Message – an NSQ message

class nsq.Message(id, body, timestamp, attempts)
A class representing a message received from nsqd.

If you want to perform asynchronous message processing use the nsq.Message.enable_async()
method, pass the message around, and respond using the appropriate instance method.

Parameters

• id (string) – the ID of the message

• body (string) – the raw message body

• timestamp (int) – the timestamp the message was produced

• attempts (int) – the number of times this message was attempted

enable_async()
Enables asynchronous processing for this message.

nsq.Reader will not automatically respond to the message upon return of message_handler.

finish()
Respond to nsqd that you’ve processed this message successfully (or would like to silently discard it).

has_responded()
Returns whether or not this message has been responded to.

is_async()
Returns whether or not asynchronous processing has been enabled.

requeue(**kwargs)
Respond to nsqd that you’ve failed to process this message successfully (and would like it to be requeued).

Parameters

• backoff (bool) – whether or not nsq.Reader should apply backoff handling

• delay (int) – the amount of time (in seconds) that this message should be delayed

touch()
Respond to nsqd that you need more time to process the message.

3

pynsq Documentation, Release 0.5.0

4 Chapter 1. Message – an NSQ message

CHAPTER 2

Consumers

nsq.run()
Starts any instantiated nsq.Reader or nsq.Writer

2.1 Reader – high-level consumer

class nsq.Reader(topic, channel, message_handler=None, name=None, nsqd_tcp_addresses=None,
lookupd_http_addresses=None, max_tries=5, max_in_flight=1, requeue_delay=90,
lookupd_poll_interval=60, low_rdy_idle_timeout=10, heartbeat_interval=30,
max_backoff_duration=128, lookupd_poll_jitter=0.3, tls_v1=False, tls_options=None)

Reader provides high-level functionality for building robust NSQ consumers in Python on top of the async
module.

Reader receives messages over the specified topic/channel and calls message_handler for each mes-
sage (up to max_tries).

Multiple readers can be instantiated in a single process (to consume from multiple topics/channels at once).

Supports various hooks to modify behavior when heartbeats are received, to temporarily disable the reader, and
pre-process/validate messages.

When supplied a list of nsqlookupd addresses, it will periodically poll those addresses to discover new
producers of the specified topic.

It maintains a sufficient RDY count based on the # of producers and your configured max_in_flight.

Handlers should be defined as shown in the examples below. The handler receives a nsq.Message
object that has instance methods nsq.Message.finish(), nsq.Message.requeue(), and
nsq.Message.touch() to respond to nsqd.

It is responsible for sending FIN or REQ commands based on return value of message_handler. When
re-queueing, an increasing delay will be calculated automatically.

Additionally, when message processing fails, it will backoff in increasing multiples of requeue_delay be-
tween updating of RDY count.

Synchronous example:

import nsq

def handler(message):
print message
return True

5

pynsq Documentation, Release 0.5.0

r = nsq.Reader(message_handler=handler,
lookupd_http_addresses=[’http://127.0.0.1:4161’],
topic="nsq_reader", channel="asdf", lookupd_poll_interval=15)

nsq.run()

Asynchronous example:

import nsq

buf = []

def process_message(message):
global buf
message.enable_async()
cache the message for later processing
buf.append(message)
if len(buf) >= 3:

for msg in buf:
print msg
msg.finish()

buf = []
else:

print ’deferring processing’

r = nsq.Reader(message_handler=process_message,
lookupd_http_addresses=[’http://127.0.0.1:4161’],
topic="nsq_reader", channel="async", max_in_flight=9)

nsq.run()

Parameters

• message_handler – the callable that will be executed for each message received

• topic – specifies the desired NSQ topic

• channel – specifies the desired NSQ channel

• name – a string that is used for logging messages (defaults to “topic:channel”)

• nsqd_tcp_addresses – a sequence of string addresses of the nsqd instances this reader
should connect to

• lookupd_http_addresses – a sequence of string addresses of the nsqlookupd instances this
reader should query for producers of the specified topic

• max_tries – the maximum number of attempts the reader will make to process a message
after which messages will be automatically discarded

• max_in_flight – the maximum number of messages this reader will pipeline for processing.
this value will be divided evenly amongst the configured/discovered nsqd producers

• requeue_delay – the base multiple used when re-queueing (multiplied by # of attempts)

• lookupd_poll_interval – the amount of time in seconds between querying all of the sup-
plied nsqlookupd instances. a random amount of time based on thie value will be initially
introduced in order to add jitter when multiple readers are running

• low_rdy_idle_timeout – the amount of time in seconds to wait for a message from a
producer when in a state where RDY counts are re-distributed (ie. max_in_flight <
num_producers)

6 Chapter 2. Consumers

pynsq Documentation, Release 0.5.0

• heartbeat_interval – the amount of time in seconds to negotiate with the connected pro-
ducers to send heartbeats (requires nsqd 0.2.19+)

• max_backoff_duration – the maximum time we will allow a backoff state to last in seconds

• lookupd_poll_jitter – The maximum fractional amount of jitter to add to the lookupd pool
loop. This helps evenly distribute requests even if multiple consumers restart at the same
time.

• tls_v1 – enable TLS v1 encryption (requires nsqd 0.2.22+)

• tls_options – dictionary of options to pass to ssl.wrap_socket() as **kwargs

connect_to_nsqd(host, port)
Adds a connection to nsqd at the specified address.

Parameters

• host – the address to connect to

• port – the port to connect to

disabled()
Called as part of RDY handling to identify whether this Reader has been disabled

This is useful to subclass and override to examine a file on disk or a key in cache to identify if this reader
should pause execution (during a deploy, etc.).

giving_up(message)
Called when a message has been received where msg.attempts > max_tries

This is useful to subclass and override to perform a task (such as writing to disk, etc.)

Parameters message – the nsq.Message received

heartbeat(conn)
Called whenever a heartbeat has been received

This is useful to subclass and override to perform an action based on liveness (for monitoring, etc.)

Parameters conn – the nsq.AsyncConn over which the heartbeat was received

is_starved()
Used to identify when buffered messages should be processed and responded to.

When max_in_flight > 1 and you’re batching messages together to perform work is isn’t possible to
just compare the len of your list of buffered messages against your configured max_in_flight (because
max_in_flight may not be evenly divisible by the number of producers you’re connected to, ie. you might
never get that many messages... it’s a max).

Example:

def message_handler(self, nsq_msg, reader):
buffer messages
if reader.is_starved():

perform work

reader = nsq.Reader(...)
reader.set_message_handler(functools.partial(message_handler, reader=reader))
nsq.run()

process_message(message)
Called when a message is received in order to execute the configured message_handler

This is useful to subclass and override if you want to change how your message handlers are called.

2.1. Reader – high-level consumer 7

http://docs.python.org/2/library/ssl.html#ssl.wrap_socket

pynsq Documentation, Release 0.5.0

Parameters message – the nsq.Message received

query_lookupd()
Trigger a query of the configured nsq_lookupd_http_addresses.

set_message_handler(message_handler)
Assigns the callback method to be executed for each message received

Parameters message_handler – a callable that takes a single argument

8 Chapter 2. Consumers

CHAPTER 3

Producers

nsq.run()
Starts any instantiated nsq.Reader or nsq.Writer

3.1 Writer – high-level producer

class nsq.Writer(nsqd_tcp_addresses, heartbeat_interval=30)
A high-level producer class built on top of the Tornado IOLoop supporting async publishing (PUB & MPUB) of
messages to nsqd over the TCP protocol.

Example publishing a message repeatedly using a Tornado IOLoop periodic callback:

import nsq
import tornado.ioloop
import time

def pub_message():
writer.pub(’test’, time.strftime(’%H:%M:%S’), finish_pub)

def finish_pub(conn, data):
print data

writer = nsq.Writer(["127.0.0.1:4150"])
tornado.ioloop.PeriodicCallback(pub_message, 1000).start()
nsq.run()

Example publshing a message from a Tornado HTTP request handler:

import functools
import tornado.httpserver
import tornado.ioloop
import tornado.options
import tornado.web
from nsq import Writer, Error
from tornado.options import define, options

class MainHandler(tornado.web.RequestHandler):
@property
def nsq(self):

return self.application.nsq

def get(self):

9

http://tornadoweb.org

pynsq Documentation, Release 0.5.0

topic = "log"
msg = "Hello world"
msg_cn = "Hello "

self.nsq.pub(topic, msg) # pub
self.nsq.mpub(topic, [msg, msg_cn]) # mpub

customize callback
callback = functools.partial(self.finish_pub, topic=topic, msg=msg)
self.nsq.pub(topic, msg, callback=callback)

self.write(msg)

def finish_pub(self, conn, data, topic, msg):
if isinstance(data, Error):

try to re-pub message again if pub failed
self.nsq.pub(topic, msg)

class Application(tornado.web.Application):
def __init__(self, handlers, **settings):

self.nsq = Writer(["127.0.0.1:4150"])
super(Application, self).__init__(handlers, **settings)

Parameters

• nsqd_tcp_addresses – a sequence of (addresses, port) of the nsqd instances this writer
should publish to

• heartbeat_interval – the interval in seconds to configure heartbeats w/ nsqd

10 Chapter 3. Producers

CHAPTER 4

LegacyReader – backwards compatible Reader

class nsq.LegacyReader(*args, **kwargs)
In v0.5.0 we dropped support for “tasks” in the nsq.Reader API in favor of a single message handler.

LegacyReader is a backwards compatible API for clients interacting with v0.5.0+ that want to continue
to use “tasks”.

Usage:

from nsq import LegacyReader as Reader

11

pynsq Documentation, Release 0.5.0

12 Chapter 4. LegacyReader – backwards compatible Reader

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

13

pynsq Documentation, Release 0.5.0

14 Chapter 5. Indices and tables

Index

C
connect_to_nsqd() (nsq.Reader method), 7

D
disabled() (nsq.Reader method), 7

E
enable_async() (nsq.Message method), 3

F
finish() (nsq.Message method), 3

G
giving_up() (nsq.Reader method), 7

H
has_responded() (nsq.Message method), 3
heartbeat() (nsq.Reader method), 7

I
is_async() (nsq.Message method), 3
is_starved() (nsq.Reader method), 7

L
LegacyReader (class in nsq), 11

M
Message (class in nsq), 3

P
process_message() (nsq.Reader method), 7

Q
query_lookupd() (nsq.Reader method), 8

R
Reader (class in nsq), 5
requeue() (nsq.Message method), 3

S
set_message_handler() (nsq.Reader method), 8

T
touch() (nsq.Message method), 3

W
Writer (class in nsq), 9

15

	Message – an NSQ message
	Consumers
	Reader – high-level consumer

	Producers
	Writer – high-level producer

	LegacyReader – backwards compatible Reader
	Indices and tables

